亚洲国产婷婷_手机在线观看国产精品_日本一区二区三区在线视频_亚洲精品成人久久

首頁 > 汽車測評 > 汽車測評 > 生成式AI產業發展的前途與挑戰

生成式AI產業發展的前途與挑戰

發布時間:2024-06-04 16:39:37

生成式AI推動大數據時代向大智能時代躍遷

 

產業觀察家們注意到生成式AI的革命性意義,并作出豐富解讀。英偉達創始人兼首席執行官黃仁勛稱生成式AI的推出為“AI產業的iPhone時刻”,意指其顛覆性的技術突破和產品形態或將引發Al產業的全面變革。投資公司a16z的合伙人馬丁·卡薩多(Martin Casado)則稱其為“第三個計算時代”,意指繼微芯片將計算的邊際成本降到零、互聯網將分發的邊際成本降到零之后,大模型將創作內容的邊際成本降到零的第三次飛躍。麥肯錫技術合伙人萊瑞拉·余(Lareina Yee)則將其類比為計算產業經歷過的大型機到PC的劇變,意指生成式AI將技術使用權從精英轉向大眾,實現了AI技術的民主化。然而,以上解讀局限于AI產業自身,沒有考慮生成式AI如何重塑更廣泛的經濟。筆者認為,生成式AI和大模型有潛力成為整個國民經濟智能基礎設施,進而奠定所謂的大智能時代。

 

生成式AI,有何不同

 

不同于專注解釋現有數據的分析式AI或根據給定輸入推斷輸出的預測式AI,生成式AI專注于生成新內容,或稱合成數據(synthetic data)。ChatGPT僅是大模型的一種,準確地說,它僅是文本大模型的一種。文本大模型之外,還有音頻大模型和視覺大模型。最近,大模型已發展至具備多模態對話能力。

 

不同于預設規則或者試圖尋找結構化規則的傳統AI,生成式AI直接從海量未經標簽化的非結構化數據中提取基礎模型(foundation model)。由于基礎模型的參數巨大,常被稱為大模型。大模型的訓練極端昂貴,但具備一系列傳統AI模型不具備的優勢:一是其采取的非監督訓練的方式極大地降低了人工標注的需要;二是模型具有更好的通用性,可靈活應對多種任務;三是大模型可以理解并使用人類語言,交互體驗非常自然。

 

歸根到底,大模型是人類全量知識的壓縮。傳統AI利用有限的知識(預設的算法)從豐富的場景數據中提取結果,而大模型利用近乎完備的知識去解讀場景數據(盡管它不一定豐富)。

 

大模型作為智能基礎設施

 

生產力的進步通常體現為某種新型基礎設施的建立。工業時代出現電力基礎設施,網絡化時代出現網絡基礎設施,而智能時代將出現何種基礎設施?筆者斷言大模型具備成為智能基礎設施的潛力,因其具備基礎設施的三個基本特征。

 

一是通用性。傳統AI需要針對特定任務設計,表現出更多的專用性與垂直性。相比之下,經過高強度預訓練的大模型具備靈活應對多種非預設任務的能力,可通過微調及提示詞工程實現應用情景的高擴展,進而在通用性上大大提升。

 

二是規模經濟。大模型的規模經濟與兩個概念有關。一是智能涌現。只有模型參數規模超越臨界點之后,智能才開始涌現。工業經濟情景下,低于最小有效生產規模的廠商無法有效參與市場競爭。類似地,廠商必須投入高昂的前期訓練成本,才能參與大模型市場競爭。二是智能摩爾定律。傳統摩爾定律預測硅片上的晶體管密度隨時間推移指數級增長,而成本保持不變。智能摩爾定律則預測大模型智能所能覆蓋的場景數(智能密度)具有類似的規律。這意味著,隨著大模型參數的增長,其覆蓋智能場景的單位成本呈指數級降低。

 

三是外部性。修好的路上不跑車,價值等于零。盡管大模型語境下的“車”是什么尚未完全確定,但確定的是大模型的出現將促進各類“車型”的創新。因此,大模型對經濟的推動作用要遠遠大于生成式AI產業產值本身。聊天類應用僅僅是大模型應用的初級形態,創意和想象力與未知場景結合迸發出的產業能量,才是大模型作為基礎設施最具想象空間之處。

 

通用性、規模經濟和外部性是基礎設施的一般性特征。那么,大模型作為智能基礎設施的特殊性何在?筆者認為,這是人類歷史上第一次實現智能的大規模集中供給,故而稱其為智能基礎設施。難道數字化時代不是已見證林林總總的智能化基礎設施嗎(如智能手機、智能電網、智能交通等)?此處需澄清,智能的基礎設施化不同于基礎設施的智能化。智能手機的核心是手機,智能電網的核心是電網,智能交通的核心是交通,賦予其各種智能內涵的過程是基礎設施的智能化。智能基礎設施的核心則是相對通用的智能本身,能對接千行百業。過去幾十年,數字化基礎設施圍繞信息的采集、處理、傳輸、存儲、計算等環節得到充分發展,而智能基礎設施的發展才剛剛開始。

 

從大數據時代到大智能時代

 

每輪基礎設施躍遷都會引發一輪新商業機遇。這是因為,基礎設施將此前需要分散承擔的可變成本轉化為集中承擔的固定成本,推動新要素普及、降低創新門檻。智能基礎設施帶來的新要素就是智能:大模型壓縮了人類所有知識,將場景數據輸入大模型,大模型就能根據其知識反饋相應結果。當這種智能產生模式廣泛應用,我們或將見證前所未有的大智能時代。

 

筆者認為,大智能時代區別于大數據時代的核心特征是數據與智能的解耦。谷歌常因所謂數據網絡效應被反壟斷機構約談:搜索引擎的市場份額越大,用戶數據就越多,數據訓練出來的機器算法也就越智能,用戶體驗進一步提升,進而獲取更大的市場份額。曾鳴教授更是基于阿里巴巴的類似經驗,提煉出以“數據智能”為基石的“智能商業”方法論。這種思維強調企業構建的數據飛輪是智能商業的前提:無數據,不智能。

 

在大智能時代,這一圭臬在產業層面仍然成立,但在企業層面的應用卻值得推敲:智能不再完全來自于企業自身構建的數據飛輪。數據作為智能原料的地位無可撼動,然而,大模型使用這種原料的效率遠超過此前分散部署的“小模型”,以至于有志于“智能商業”的企業構建自身數據飛輪喪失經濟性。國家電網能穩定輸出電力時,為何要在工廠旁邊自建小發電廠呢?

 

智能基礎設施化的后果之一是數據與智能的解耦(見圖1)。數據與智能的解耦并不意味著數據不重要,而意味著小數據也可以撬動大智能。當前,大模型的進一步發展面臨高質量數據源不足的障礙,可見數據的重要性。但這不意味著任何企業都需要花心思囤積數據。過去,企業要精心構建并維護一個數據供應鏈,才有可能實現所謂的數據智能。而今,大模型使得智能不需要在低水平重復開發。企業只需要用小數據去微調這個模型,便有可能開展“智能商業”。由此,企業可節省精力聚焦業務創新,釋放出所謂——智能紅利。

 

 


生成式AI產業生態的三大維度

 

立足當下,本部分嘗試從三個視角來把握高度動態復雜的生成式AI產業生態。一是供給側視角的技術生態,有助于理解生成式AI技術實現所需的生產要素;二是需求側視角的應用生態,有助于了解生成式AI的應用方向;三是中美競爭背景下的區域生態,有助于理解需求側和供給側在不同條件下的互動模式。

 

生成式AI技術生態

 

大模型技術生態符合典型的IT垂直分工架構。最底層是基礎設施,負責提供大模型訓練以及推理所需的算力。產業初期,算力主要用于模型預訓練。隨著各大模型紛紛商用,用于響應用戶請求所需的推理算力占比快速增加。眾所周知,大模型的算力需求主要由GPU(圖像處理單元)來滿足,NPU(神經網絡處理器)和TPU(張量處理器)等專為大模型推理運算設計的芯片也逐步成熟。NPU主要用于手機、無人機等終端產品的計算單元,TPU是谷歌設計的云計算芯片。值得注意的是,硬件集群只是基礎設施的一部分,負責硬件資源調度的云平臺也非常重要。

 

基礎設施之上是大模型。大模型有開源和閉源之分。Open AI的GPT是一個閉源模型,而2023年7月,Meta的Llama II宣布支持開源和商用,引爆了大模型領域的開源運動。選擇開源模型還是閉源模型,似乎和應用有關。chatGPT、Midjourney等廣受歡迎的面向消費(2C)領域的應用都構建在私有大模型之上。但面向企業(2B)領域的應用通常構建在開源大模型之上,因為開源大模型支持私有化部署,并在微調方面提供了更大的靈活度。

 

值得指出的是,大模型層與應用層之間存在一個中間層,旨在幫助應用開發者解決兩方面問題。一方面,基于大模型做二次開發 (微調、提示詞工程或基于人工反饋的增強學習)需要一系列工具或模板;另一方面,由于市面上存在多種大模型,應用開發者可能希望一站式接入和管理。所謂MaaS(模型即服務)集成了這些工具和功能。

 

大模型應用生態

 

技術生態主要是巨頭和工程師的場域,應用生態則是創業者和產品經理的沃土。在技術生態部分,應用層在技術堆棧中的位置得到了強調。本部分談及的應用生態從需求側視角展開,根本上是要回答大模型如何對接應用場景、創造用戶價值。這個問題可以沿著兩個維度思考:客戶屬性和產品策略。

 

一方面,2C領域和2B領域的大模型應用在價值創造方面具有顯著差異。首先,消費類應用的價值創造幾乎都在應用內完成,而企業級應用需要與企業內部價值鏈和IT系統整合。其次,消費類應用幾乎都基于公有云,而企業客戶因隱私顧慮偏好私有云或混合云部署。最后,消費類應用通常以一對多的方式提供服務進而迅速規模化,而企業級應用服務通常需要一對一定制。以上2C和2B客戶市場的一般性差異,并不因大模型技術的開創性而改變。可見,2C應用的價值創造具備獨立性,而2B應用的價值創造高度依賴其他互補性資源。進而,2C應用有望構建出一個以自身為中心的生態,而2B應用通常嵌入在位玩家(包括客戶)的生態中。

 

另一方面,無論是2B還是2C,大模型應用可考慮增強、替代或整合三種策略。增強策略為現有產品或服務加入大模型性能,進一步提升產品體驗。比如,Office產品中嵌入了基于大模型輔助工具(Copilot)或者視頻游戲中引入大模型生成個性化劇情。替代策略則把大模型應用作為生產力工具替代原有的低效流程。比如,在客服行業,替代正在大規模發生,一部分營銷設計工作也有望在大模型的支撐下實現自動化。相較于增強現有產品和替代低效流程,整合策略跳出了現有產品或流程,重新定義客戶體驗。筆者避免使用顛覆一詞,因為這種重新定義很大程度上是基于重組現有要素發生的。大模型并不創造要素,但提供了高超的整合能力(如通過智能體即Agent進行整合)。

 

上述兩個相對獨立的維度可以構建出一個2X3的矩陣。這個矩陣中的一些格子看起來比另外一些格子更令人興奮。但一個機會令人興奮的程度,通常與其進入門檻成正比,與最終勝出的概率成反比。最終,這個矩陣會被具有不同資源稟賦和風險偏好的創新者(或創新采納者)所填滿,構成一個復雜而多元的大模型應用生態。

 

生成式AI的區域生態

 

產業不可避免地嵌入在區域中。縱觀全球,生成式AI的產業競爭主要在中美之間開展。對于中美AI產業的一般性對比分析不是本文的重點。本文主要關注的是兩國區域條件的差異如何影響技術生態、應用生態以及兩者之間的良性反饋。

 

靜態對比,中美兩國在技術生態方面的差距并不致命。誠然,美國在聚集、培養生成式AI技術人才方面具有顯著優勢。并且,GPU出口管制在很大程度上也增加了中國企業的成本,但同時要看到我國有三個方面的有利因素。第一,得益于開源運動的知識溢出效應,中美技術差距并沒有大到足以阻礙中國的產業進步;第二,中國企業對開源的貢獻也日益顯著,中國也吸引了一些頂級科學家回國創業;第三,盲目的科技軍備競賽并不可取,大模型產業競爭的焦點已轉向工程化和商業化。

 

令人擔憂的反倒是中美應用生態的差距。高科技產業的發展,短期內可以靠資本維系,長期則需要靠市場來支付發展所需的成本,包括消費者側和企業側的支付。然而,中國消費者的付費能力遠不如美國消費者。中國移動通信用戶的月均支出約為50元,美國約為50美元,但中國企業購買GPU的成本要高于美國企業。在2B市場,先不論支付能力,中國企業數字化水平低首先就是一個大問題,尤其體現在SaaS(軟件即服務)的低滲透率上。大模型應用更容易部署到SaaS化程度較高的企業,因其底層數據治理較規范,流程標準化程度較高。SaaS化程度不高的企業需花費大量時間、精力和資源去做前期準備,這會導致大部分企業淺嘗輒止或望而卻步。

 

值得強調的是,中國在移動互聯網時代的“場景優勢”在生成式AI產業是不成立的。場景優勢建立在迭代之上,而迭代的前提是發展用戶。縱觀所有國內大模型企業,沒有一家像推廣移動互聯網應用程序那樣去不遺余力發展用戶。關鍵原因在于,移動互聯網應用程序服務一個新用戶的邊際成本幾乎為零,而大模型應用發展一個用戶的邊際成本恒不為零。在商業模式清晰之前,地主家也沒余糧這么燒。

 

如果說中國移動互聯網的成功經驗之一在于前端場景優勢與后端技術進步的正反饋,筆者擔心中國生成式AI產業正在經歷一個截然相反的過程。從這個動態視角再去看待中美之間技術生態的差距,恐怕會得到與靜態對比不同的結論。

 

幾點思考與建議

 

據說,人們容易高估一件事的短期影響但低估其長期潛力。關于生成式AI產業,本文的觀點恰好相反:筆者長期看好其作為智能基礎設施的前途,但短期內對其結構性障礙持悲觀態度。前文沒有論述中美生成式AI產業發展面臨的共性挑戰,而是聚焦中國相對于美國的比較劣勢。那么,中國有沒有比較優勢呢?筆者相信,發揮以下三方面的比較優勢或有助于彌補劣勢:移動互聯網生態、產業協同治理和商業模式創新。

 

一是打通移動互聯網生態與生成式AI產業生態。我國移動互聯網產業在網絡、終端與應用環節具備端到端的競爭優勢,有望加持孱弱的2C生成式AI應用生態。比如,微信生態如何引入生成式AI、國產手機操作系統如何與生成式AI融合、云網一體如何助力AI算力網絡效率提升等議題都應沿著如何利用業已建立的比較優勢去哺育生成式AI產業的思路去思考。

 

二是推動智能產業群協同發展。智能基礎設施的建設需要整合算法、算力和數據等要素,是數字基礎設施和數字資源體系的有機融合和升級。支持數字基礎設施運營企業向智能基礎設施運營企業升級,實施算力、數據、算法的一體化運營。在需求側,通過降低各行業使用生成式AI的成本,拉動應用、工程、運營等配套服務的發展。

 

三是堅定鼓勵商業模式創新。生成式AI產業面臨的問題歸根到底是價值創造和價值分配的問題,即商業模式。無論是打通移動互聯網生態還是推動產業協同發展,都旨在為生成式AI生態的發展創造一個更廣闊的環境和更堅實的基礎。這些比較優勢能否有效轉化并彌補上述比較劣勢,商業模式起決定性作用。

汽車測評更多>>

從《大師與瑪格麗特》看經典作品當代復現的創作困境 傅繼英工筆畫三十三觀音之馬郎婦觀音:至誠合作,事業騰達 粵港青年音樂家在深圳展演四場室內樂音樂會,奏響大灣區青春樂章 若羌縣舉辦“棗花開了”系列活動之移風易俗、書畫攝影作品、臨書臨印展 第十四屆全國美術作品展覽部分進京作品巡展至河南 2024年南寧市體育局局屬事業單位免筆試招聘工作人員公告(5人) 2024年中國人民政治協商會議廣州市海珠區委員會辦公室關于招聘雇員的公告(1人) 2024年中山職業技術學院第三期招聘事業單位人員公告(16人) 2024年下半年揭陽市市直事業單位專項招聘博(碩)士研究生公告(45人) 安徽大眾第二款SUV要來了,依舊轎跑風格,定位更高 阿維塔又要推新車了,定位中型轎車,明年推出 9.98萬元起售,搭載2C快充,五菱星光純電版算是真香之選嗎? 阿維塔12增程版要來了,明天開啟預售,純電續航201km MG ES5要來了,10月15日首發,主打大空間 嵐圖知音正式上市,19.69萬起,全新純電平臺打造,還配曲面屏 別錯過!這四款華為手機超高性價比,最低1199元! 解讀卡羅拉銳放,定位緊湊型SUV,配2.0L+CVT,實力表現如何? 外觀運動時尚的艾瑞澤8,1.6T爆發197馬力,實力表現到底如何? 小鵬P7i:6.4秒破百,配XNGP+AI天璣系統,產品實力值得一看 長安啟源A07全新真香版即將上市,產品力依舊保持較高水準 定位緊湊型SUV,車身軸距2770mm的哪吒X,其實力表現是否值得一看 9月銷量破萬,豐田亞洲龍2024款,2.0L+CVT,值得入手嗎 10小時訂單量破5000臺,全新智己LS6比極氪7X更值得考慮? 純電中大型轎車之爭,極越07、領克Z10,誰更具“性價比”? 塊頭都不小呀!比亞迪騰勢N9、全新“夏”MPV現身目錄 蘋果推出新款iPad mini 現在即可訂購 10月23日在實體店開售 一汽紅旗:交付 EH7 榮耀版,助力體育強國 中國車企正在“顛覆”歐洲老牌制造商?小鵬、廣汽紛紛“安撫” 第100萬輛汽車下線 理想汽車成國內首個“百萬輛新勢力車企” AION V 打頭陣,廣汽開始籌謀歐洲市場
亚洲国产婷婷_手机在线观看国产精品_日本一区二区三区在线视频_亚洲精品成人久久
欧美三日本三级少妇三99| 久久久高清一区二区三区| 久久久中精品2020中文| 国产精品久久久一本精品| 亚洲美女少妇无套啪啪呻吟| 久久综合久久综合九色| 黄色成人在线免费| 新狼窝色av性久久久久久| 欧美三级免费| 夜夜爽夜夜爽精品视频| 欧美电影电视剧在线观看| 精品动漫3d一区二区三区| 久久成人人人人精品欧| 国产精品综合视频| 校园激情久久| 国产一区二区三区成人欧美日韩在线观看 | 久久九九国产精品| 国产亚洲欧美另类中文| 欧美在线观看一区二区三区| 国产色综合久久| 欧美影院在线播放| 国产一区二区精品久久91| 久久精品国产清高在天天线| 韩国女主播一区| 久久亚洲二区| 亚洲国内欧美| 欧美另类在线观看| 亚洲网站视频福利| 国产精品视频久久| 久久成人免费日本黄色| 激情久久久久久久久久久久久久久久| 久久久91精品| 91久久在线播放| 欧美日本国产| 亚洲视频每日更新| 国产精品入口日韩视频大尺度| 亚洲欧美一区二区原创| 国产日韩一区二区| 久久免费视频这里只有精品| 亚洲国产高清一区| 欧美日韩大片| 亚洲欧洲av一区二区| 韩国成人理伦片免费播放| 噜噜爱69成人精品| 99国产精品99久久久久久| 国产精品成人在线| 欧美自拍偷拍| 91久久国产精品91久久性色| 欧美日韩免费一区| 亚洲欧美另类在线| 激情视频一区| 欧美日韩欧美一区二区| 亚洲欧美视频| 在线免费不卡视频| 欧美日韩伦理在线| 欧美一区二区三区久久精品茉莉花| 好看不卡的中文字幕| 欧美极品在线播放| 亚洲欧洲99久久| 亚洲国产高清aⅴ视频| 欧美视频在线一区二区三区| 久久精品99国产精品| 亚洲国产三级| 国产精品国产福利国产秒拍| 久久精品视频免费播放| 亚洲免费高清| 国产网站欧美日韩免费精品在线观看| 美女网站久久| 亚洲一区综合| 亚洲国产精品黑人久久久| 欧美午夜精品久久久久久超碰| 久久成年人视频| 日韩一级成人av| 国产一区二区三区精品欧美日韩一区二区三区 | 亚洲欧美日韩国产综合精品二区| 国产真实乱子伦精品视频| 欧美福利视频一区| 午夜精品视频| 亚洲激情午夜| 国产欧美视频一区二区| 欧美国产激情| 亚洲欧美日韩综合| 91久久精品国产91久久| 国产麻豆综合| 欧美人成在线| 久久视频国产精品免费视频在线| 在线亚洲免费视频| 伊人成人在线| 国产精品一区久久久久| 欧美另类高清视频在线| 久久久久久久91| 亚洲综合日韩中文字幕v在线| 亚洲国产精品精华液2区45| 国产麻豆日韩欧美久久| 欧美成人激情在线| 久久国产日韩欧美| 亚洲永久免费| 日韩一级欧洲| 亚洲国产日韩欧美综合久久| 国产视频自拍一区| 国产精品久久久久久久久搜平片 | 国产亚洲欧美一级| 欧美午夜精品久久久久免费视| 美女尤物久久精品| 久久国产精品久久精品国产| 亚洲深夜福利在线| 亚洲人成网站999久久久综合| 国产一区视频网站| 国产精品视屏| 欧美视频一区在线观看| 理论片一区二区在线| 欧美一区二区高清在线观看| 中文日韩欧美| 99亚洲一区二区| 亚洲精品少妇| **欧美日韩vr在线| 黄网站色欧美视频| 国产视频精品va久久久久久| 国产精品久久波多野结衣| 欧美区视频在线观看| 欧美成人自拍| 欧美sm极限捆绑bd| 久久综合亚州| 久久综合中文字幕| 久久久久9999亚洲精品| 久久国产精品久久w女人spa| 欧美一区二视频| 西西裸体人体做爰大胆久久久| 亚洲一区二区三区成人在线视频精品 | 性做久久久久久免费观看欧美| 亚洲深夜激情| 亚洲精品欧洲精品| 亚洲精品视频在线| 亚洲经典在线| 亚洲精品一区二区三区av| 最新日韩欧美| 亚洲免费观看| 一区二区三区欧美成人| 中国成人黄色视屏| 亚洲一区日韩在线| 亚洲男人的天堂在线观看| 亚洲欧美激情诱惑| 午夜一区在线| 久久精品视频免费播放| 久久久国产成人精品| 久久综合成人精品亚洲另类欧美| 老鸭窝毛片一区二区三区| 欧美大片va欧美在线播放| 欧美黑人一区二区三区| 欧美日韩国产精品一卡| 欧美亚洲不卡| 国产精品主播| 狠狠久久亚洲欧美| 亚洲丰满在线| 日韩视频专区| 亚洲一区二区三区免费在线观看| 亚洲综合精品自拍| 久久电影一区| 美国十次成人| 欧美日韩国产精品| 国产精品久久久久一区二区三区| 国产欧美一区二区精品忘忧草| 国产一区久久| 91久久综合亚洲鲁鲁五月天| 9l国产精品久久久久麻豆| 亚洲尤物精选| 久久久夜夜夜| 欧美日韩成人一区二区三区| 国产精品久久77777| 国产一区二区三区在线观看精品 | 久久久99免费视频| 欧美大片91| 国产精品久久九九| 国内精品伊人久久久久av一坑| 亚洲国产精品www| 亚洲图片在线观看| 久久久久国产精品一区三寸| 欧美国产精品久久| 国产精品乱码久久久久久| 激情欧美日韩一区| 99成人在线| 久久大逼视频| 欧美日韩国产精品专区 | 国产精品s色| 韩国三级在线一区| 日韩视频在线观看| 午夜伦欧美伦电影理论片| 欧美99在线视频观看| 国产精品久久久一区麻豆最新章节| 黑人一区二区三区四区五区| 亚洲精品一级| 久久精品综合| 欧美日韩亚洲国产精品| 国产亚洲女人久久久久毛片| 日韩午夜在线视频| 欧美一区国产在线| 欧美日韩国产成人高清视频| 国产日韩欧美| 亚洲免费不卡| 久久午夜精品一区二区| 欧美三级欧美一级| 亚洲电影在线| 欧美亚洲免费在线| 欧美日韩八区|